We use operando SAXS/WAXS and SANS to track the nucleation, growth and dissolution of solid deposits from atomic to sub-micron scales during Li-S cell operation …. show more

C.Prehal, […], S.A. Freunberger, V. Wood

Redox mediators could catalyse otherwise slow and energy-inefficient cycling of Li–S and Li–O2 batteries by shuttling electrons or holes between the electrode and the solid insulating storage materials …. show more

D. Cao, […], S. Shi, S.A. Freunberger, Y. Chen

Sophisticated SAXS data analysis gives powerful insight into complex multi-phase materials transformation: here the Li-O2 discharge conundrum is solved …. show more

C.Prehal, […], S.A. Freunberger

The mechanism of mediated peroxide and superoxide oxidation is elucidated, explaining how mediators either enhance or suppress 1O2 formation. …. show more

Y. Petit, […], S.A. Freunberger

A unified mechanism of singlet oxygen formation and hence parasitic reactions across Li-, Na-, and K-O2 is presented…. show more

E. Mourad, Y.K. Petit, […], S. Brutti, S.A. Freunberger

Singlet oxygen forms at the cathode of a lithium–oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction more

N. Mahne, […] S.M. Borisov, S.A. Freunberger

Only performance metrics that include all cell components and operation parameters can tell whether a true advance over intercalation batteries has been achieved.…show more

S.A. Freunberger

Iodide based energy storage is a potential candidate to improve performance of hybrid supercapacitors and.…. show more

C. Prehal, […], S.A. Freunberger, Q. Abbas

Here we report an biredox ionic liquids that achieve bulk-like redox density at liquid-like fast kinetics.... show more

E. Mourad, […] S.A. Freunberger, F. Favier, O. Fontaine

We introduce monoalkylation of diamines, specifically DABCOnium, as a high-voltage stable class of singlet oxygen quenchers.... show more

Y.K. Petit, C. Leypold, N. Mahne, […] S.A. Freunberger

we show that 1O2 forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. …. show more

N. Mahne, S.E. Renfrew, B.D. McCloskey, S.A. Freunberger

Singlet oxygen forms in the Na-O2 at all stages of cycling and is a main driver for parasitic chemistry.…. show more

L. Schafzahl, [...], S. M. Borisov, S.A. Freunberger

Organic redox mediators are decomposed by singlet oxygen, indicating strategies to rationally design stable redox mediators…. show more

W.-J. Kwak, […], Y.K. Petit, […], S.A. Freunberger, Y.-K. Sun

We review recent advances in understanding the chemistry of the Li–O2 cathode and provide a perspective on dominant research needs….show more

N. Mahne, O. Fontaine, M. Thotiyl, M. Wilkening, S.A. Freunberger

A unified mechanism, which can explain O2 reduction across the whole range of solvents is descrobed.…show more

L. Johnson […] S.A. Freunberger […] J-M. Tarascon, P.G. Bruce

Nature Materials | September 2013

A stable cathode for the aprotic Li-O2 battery
A TiC based cathode reduces greatly side-reactions compared with carbon and exhibits better reversible formation/decomposition of Li2O2 even than nanoporous gold …. show more

M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce

We show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator ….show more

Y. Chen, S.A. Freunberger, Z. Peng, O. Fontaine, P.G. Bruce

We show cycling of the Li-O2 battery with dimethyl sulfoxide electrolyte and porous gold electrode…. show more

Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce

Although ether-based electrolytes do form Li2O2 on the first discharge they also decompose and that decomposition increases while Li2O2 decreases on cycling. …. show more

S.A. Freunberger, […], P.G. Bruce

Here we show that the widely observed rechargeability of Li-O2 cells with carbonate electrolytes is in fact due to back-to-back irreversible reactions …. show more

S.A. Freunberger […] P.G. Bruce

  1. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering
    C. Prehal*, J. M. Mentlen, S. D. Talian, A. Vizintin, R. Dominko, H. Amenitsch, L. Porcar S.A. Freunberger*, V. Wood*,
    Nat. Commun. DOI: 10.1038/s41467-022-33931-4 (2022).


  2. Carbon Foams via Ring-Opening Metathesis Polymerization of Emulsion Templates: A Facile Method to Make Carbon Current Collectors for Battery Applications
    S. Kovačič*, B. Schafzahl, N. B. Matsko, K. Gruber, M. Schmuck, S. Koller S.A. Freunberger*, C. Slugovc*
    ACS Appl. Energy Mater. DOI: 10.1021/acsaem.2c02787 (2022).


  3. Exclusive Solution Discharge in Li–O2 Batteries?
    C. Prehal*, S. Mondal, L. Lovicar, S.A. Freunberger*,
    ACS Energy Lett. DOI: 10.1021/acsenergylett.2c01711 (2022).


  4. Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries
    D. Cao, X. Shen, A. Wang, F. Yu, Y. Wu, S. Shi*, S.A. Freunberger*, Y. Chen*
    Nature Catalysis DOI: 10.1038/s41929-022-00752-z (2022).
    Highlighted in News & Views, Haoshen Zhou. Nature Catalysis , 5, 173–174 (2022).


  1. Mechanism of Li2S formation and dissolution in Lithium-Sulphur batteries
    C. Prehal*, S. Drvarič Talian, A. Vizintin, H. Amenitsch, R. Dominko, S.A. Freunberger*, V. Wood*
    Preprint on Research Square DOI: 10.21203/ (2021).


  2. Investigation of Electrochemical and Chemical Processes Occurring at Positive Potentials in “Water-in-Salt” Electrolytes
    M. Maffre, R. Bouchal, S.A. Freunberger, N. Lindahl, P. Johansson, F. Favier, O. Fontaine, D. Bélanger
    J. Electrochem. Soc. 168, 050550 (2021).


  3. In situ small-angle X-ray scattering reveals solution phase discharge of Li–O2 batteries with weakly solvating electrolytes
    C. Prehal*, A. Samojlov, M. Nachtnebel, L. Lovicar, M. Kriechbaum, H. Amenitsch, S.A. Freunberger*
    Proc. Natl. Acad. Sci. U.S.A. 118, e2021893118 (2021).


  4. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation
    Y.K. Petit, E. Mourad, C. Prehal, C. Leypold, A. Windischbacher, D. Mijailovic, C. Slugovc, S.M. Borisov, E. Zojer, S. Brutti, O. Fontaine*, S.A. Freunberger*
    Nature Chemistry doi:10.1038/s41557-021-00643-z (2021).


  5. Ambient Condition Alcohol Reforming to Hydrogen with Electricity Output
    Z.M. Bhat, R. Thimmappa, N.C. Dargily, A. Raafik, A.R. Kottaichamy, M.C. Devendrachari, M. Itagi, H.M.N. Kotresh*, S.A. Freunberger*, M. Ottakam Thotiyl*
    ACS Sustainable Chem. Eng. 9, 3104 (2021).


  1. Surface and catalyst driven singlet oxygen formation in Li-O2 cells
    A. Samojlov, D. Schuster, J. Kahr, S.A. Freunberger*
    Electrochim. Acta 362, 137175 (2020).

    Invited contribution for the Tajima Prize Lecture.


  2. Persistent and reversible solid iodine electrodeposition in nanoporous carbons
    C. Prehal*, H. Fitzek, G. Kothleitner, V. Presser, B. Gollas, S.A. Freunberger*, Q. Abbas*
    Nature Communications 11, 4838 (2020).


  3. Current status and future perspectives of lithium metal batteries
    A. Varzi, K. Thanner, R. Scipioni, D. Di Lecce, J. Hassoun, S. Dörfler, H. Altheus, S. Kaskel, C. Prehal, S.A. Freunberger
    J. Power Sources 480, 228803 (2020).


  4. 2‐Methoxyhydroquinone from Vanillin for Aqueous Redox‐Flow Batteries
    W. Schlemmer, P. Nothdurft, A. Petzold, P. Frühwirt, M. Schmallegger, G. Gescheidt-Demner, R. Fischer, S.A. Freunberger, W. Kern, S. Spirk
    Angewandte Chemie Int. Ed. 59, 22943 (2019).


  5. Competitive Salt Precipitation/Dissolution During Free‐Water Reduction in Water‐in‐Salt Electrolyte
    R. Bouchal, Z. Li, C. Bongu, S. Le Vot, R. Berthelot, B. Rotenberg, F. Favier, S.A. Freunberger, M. Salanne, O. Fontaine
    Angewandte Chemie Int. Ed. 59, 15913 (2019).


  6. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future
    W.-J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L.R. Johnson, P.G. Bruce, L.F. Nazar, Y.-K. Sun, A.A. Frimer, M. Noked, S.A. Freunberger, Doron Aurbach
    Chemical Reviews 120, 6626 (2020).


  1. Interphase identity crisis
    S.A. Freunberger*
    Nature Chemistry doi: 10.1038/s41557-019-0311-0 (2019).


  2. Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium-Oxygen Batteries
    W.-J. Kwak, S.A. Freunberger, H. Kim, J. Park, T.T. Nguyen, H.-G. Jung, H.R. Byon, Y.-K. Sun
    ACS Catalysis 9, 9914 (2019).


  3. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal-O2 batteries
    E. Mourad, Y. Petit, R. Spezia, A. Samojlov, F. Summa, C. Prehal, C. Leypold, N. Mahne, C. Slugovc, O. Fontaine, S. Brutti*, S.A. Freunberger*
    Energy & Environmental Science. 12, 2559 (2019).


  4. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen
    W.-J. Kwak, H. Kim, Y.K. Petit, C. Leypold, T.T. Nguyen, N. Mahne, P. Redfern, L.A. Curtiss, H.-G. Jung, S.M. Borisov, S.A. Freunberger* & Y.-K. Sun*
    Nature Commun. 10, 1380 (2019).


  5. Thousands of cycles
    Y.K. Petit, S.A. Freunberger*
    Nature Materials 18, 301 (2019).


  6. DABCOnium: An Efficient and High‐voltage Stable Singlet Oxygen Quencher for Metal‐O2 Cells
    Y.K. Petit, C. Leypold, N. Mahne, E. Mourad, L. Schafzahl, C. Slugovc, S.M. Borisov, S.A. Freunberger*
    Angew. Chem. Int. Ed. 58, 6535 (2019).
    Angew. Chem. 131, 6605 (2019).
    Highlighted as Very Important Paper.


  7. Li–O2 Cell-Scale Energy Densities
    C. Prehal, S.A. Freunberger*
    Joule 3, 321 (2019).


  1. Inter-Backbone Charge Transfer as Prerequisite for Long-Range Conductivity in Perylene Bisimide Hydrogels
    M. Burian, F. Rigodanza, N. Demitri, L. Đorđević, S. Marchesan, T. Steinhartova, I. Letofsky-Papst, I. Khalakhan, E. Mourad, S.A. Freunberger, H. Amenitsch, M. Prato, Z. Syrgiannis
    ACS Nano 12, 5800 (2018).


  2. Long Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport and Mechanical Properties
    L. Schafzahl, H. Ehmann, M. Kriechbaum, J. Sattelkow, T. Ganner, H. Plank, M. Wilkening, S.A. Freunberger*
    Chem. Mater. 30, 3338 (2018).


  3. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen
    N. Mahne, S.E. Renfrew, B.D. McCloskey, S.A. Freunberger*
    Angew. Chem. Int. Ed. 57, 5529 (2018).
    Angew. Chem. 130, 5627 (2018).
    Highlighted as Very Important Paper.


  1. Quantifying Total Superoxide, Peroxide, and Carbonaceous Compounds in Metal–O2 Batteries and the Solid Electrolyte Interphase
    B. Schafzahl, E. Mourad, L. Schafzahl, Y. Petit, A.R. Raju, M.M. Ottakam, M. Wilkening, C. Slugovc, S.A. Freunberger*
    ACS Energy Letters 3, 170 (2017).


    This is a link

  2. Singlet Oxygen during Cycling of the Aprotic Na-O2 Battery
    L. Schafzahl, N. Mahne, B. Schafzahl, M. Wilkening, C. Slugovc, S.M. Borisov, S.A. Freunberger*
    Angew. Chem. Int. Ed. 56, 15728 (2017).
    Angew. Chem. 129, 15934 (2017).
    Highlighted as Very Important Paper.
    Featuring the Inside Back Cover.


  3. Electron-Deficient Near-Infrared Pt(II) and Pd(II) Benzoporphyrins with Dual Phosphorescence and Unusually Efficient Thermally Activated Delayed Fluorescence – First Demonstration of Simultaneous Oxygen and Temperature Sensing with a Single Emitter
    P.W. Zach, S.A. Freunberger, I. Klimant, S.M. Borisov
    ACS Appl. Mat. Interfaces 9, 38008 (2017).


  4. Mechanism and performance of lithium-oxygen batteries – a perspective
    N. Mahne, O. Fontaine, M.M. Ottakam, M. Wilkening, S.A. Freunberger*
    Chemical Science 8, 6716 (2017). invited Perspective full text


    This is a link

  5. Biredox ionic liquids: new opportunities toward high performances supercapacitors
    C. Bodin, E. Mourad, D. Zigah, S. Le Vot, S.A. Freunberger, F. Favier, O. Fontaine
    Faraday Discussions doi: 10.1039/C7FD00174F (advance article).


  6. True performance metrics in beyond lithium-ion batteries
    S.A. Freunberger*
    Nature Energy , 2, 17091 (2017).
    Highlighted in Nature Energy 2, 17126 (2017).
    Highlighted in the Nature Energy collection of articles 2017 Edition.
    Highlighted in the Nature collection of energy research articles 2017.


  7. Singlet oxygen generation as a main cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries
    N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm, A. Leitgeb, G.A. Strohmeier, M. Wilkening, O. Fontaine, D. Kramer, C. Slugovc, S.M. Borisov, S.A. Freunberger*
    Nature Energy , 2, 17036 (2017).
    Highlighted in News & Views, A.C. Luntz & B.D. McCloskey. Nature Energy 2, 17056 (2017).


  8. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors
    E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S.A. Freunberger, F. Favier, O. Fontaine
    Nature Materials , 16, 446-453 (2017).


  9. An Electrolyte for Reversible Cycling of Na Metal and Na Intercalation Compounds
    L. Schafzahl, I. Hanzu, M. Wilkening, S.A. Freunberger*
    ChemSusChem 10, 401-408, (2017).


  1. Batteries: Charging ahead rationally
    S.A. Freunberger*
    Nature Energy 1, 16074 (2016). invited News & Views


  2. Proton conducting hollow graphene oxide cylinder as molecular fuel barrier for tubular H2-air fuel cell
    R. Thimmappa, M. C. Devendrachari, S. Shafi, S.A. Freunberger*, M. Ottakam Thotiyl*
    Int. J. Hydrogen Energy 41, 22305–22315 (2016).


  3. Method for determination of the internal short resistance and heat evolution at different echanical loads of a lithium ion battery cell based on dummy pouch cells.
    T. Volck, W. Sinz, G. Gstrein, C. Breitfuss, S. Heindl, H. Steffan, S.A. Freunberger, M. Wilkening, M. Uitz, C. Fink, A. Geier
    Batteries 2, 8, (2016).


  4. Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2-V2O5 microspheres prepared by non-hydrolytic sol-gel
    M. Perez, N. Louvain, M. Kaschowitz, S.A. Freunberger, O. Fontaine, B. Boury, N. Brun, H.Mutin
    Sol-Gel Science Techn. 79, 270, (2016).


  5. Biredox ionic liquids: electrochemical investigation and impact of ion size on electron transfer
    E. Mourad, L. Coustan, S.A. Freunberger, A. Mehdi, A. Vioux, F. Favier, O. Fontaine
    Electrochimica Acta 206, 513 (2016).


  6. Evaluating the Trade-Off Between Mechanical and Electrochemical Performance of Separators for Lithium-Ion Batteries: Methodology and Application.
    M. Plaimer, C. Breitfuß, W. Sinz, S. Heindl, C. Ellersdorfer, H. Steffan, M. Wilkening, V. Hennige, Reinhard Tatschl, A. Geier, C. Schramm, S.A. Freunberger*
    J. Power Sources 306, 702 (2016).


  7. A Moisture- and Oxygen-Impermeable Separator for Aprotic Li-O2 Batteries
    B. G. Kim, J.-S. Kim, J. Min, Y.-H. Lee, J. H. Choi, M. C. Jang, S.A. Freunberger, and J. W. Choi
    Adv. Funct. Mater. 26, 1747 (2016).


  1. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
    L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B.B. Praveen, K.Dholakia, J.-M. Tarascon, P.G. Bruce
    Nature Chemistry 6, 1091 (2014). [106] ISI Highly Cited/Hot Paper


    This is a link
  2. Photoinduced Electron Transfer Efficiency of Fluorescent pH-Probes with Halogenated Phenols
    D. Aigner, S.A. Freunberger, M. Wilkening, R. Saf, S.M. Borisov, I. Klimant, Enhancing
    Anal. Chem., 86, 9293 (2014).


  3. Short-range Li diffusion vs long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 – the discharge product in lithium-air batteries.
    A. Dunst, V. Epp, I. Hanzu, S.A. Freunberger, and M. Wilkening
    Energy Environ. Sci. 7, 2739 (2014).


    This is a link

  4. Materials Challenges in Rechargeable Lithium-Oxygen Batteries
    N. Ortiz-Vitoriano, D. Kwabi, S.A. Freunberger, Y.Chen, P.G.Bruce, N. Imanishi, Y. Shao-Horn
    MRS bulletin, 39, 443-452, doi:10.1557/mrs.2014.87 (2014).


  5. Aprotic Li–O2 Battery: Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent
    C. Li, O. Fontaine, S.A. Freunberger, L. Johnson, S. Grugeon, S. Laruelle, P.G. Bruce, M. Armand
    J. Phys. Chem. C 118, 3393 (2014).


    This is a link
  1. A stable cathode for the aprotic Li-O2 battery
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce
    Nature Materials 12, 1050 (2013).


    This is a link

  2. Charging a Li-O2 battery using a redox mediator
    Y. Chen*, S.A. Freunberger*, Z. Peng, O. Fontaine, P.G. Bruce
    Nature Chemistry 5, 489 (2013). *equal contributions

    Highlighted in News & Analysis | Energy Focus: MRS Bulletin 38, 529 (2013).
    Highlighted in News & Views, Y. Wang & Y. Xia. Nature Chemistry 5, 445 (2013).


    This is a link

  1. The carbon electrode in non-aqueous Li-O2 cells
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P. G. Bruce
    J. Am. Chem. Soc. 135, 494 (2012).


    This is a link

  2. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
    N.S. Choi, Z. Chen, S.A. Freunberger, G. Yushin, X. Ji, Y.K. Sun, K. Amine, L.F. Nazar, J. Cho, P.G. Bruce
    Angew. Chem. Int. Ed. 51, 9994 (2012); Angew. Chem.,124, 10134 (2012).


  3. A reversible and higher rate Li-O2 battery
    Z. Peng*, S.A. Freunberger*, Y. Chen, P. G. Bruce
    Science 337, 563 (2012). *equal contributions [373].

    Research Highlight | Electrochemistry: Rechargeable Li-air battery. Nature 488, 8 (2012).
    Issue Highlight in Science 3 August 2012, early publication in Sciencexpress due to its high importance.


    This is a link

  4. The Li-O2 battery with a dimethylformamide electrolyte
    Y. Chen, S.A. Freunberger, P. G. Bruce
    J. Am. Chem. Soc. 134, 7952 (2012).


    This is a link

  5. Li-O2 and Li-S Batteries with High Energy Storage
    P. G. Bruce, S.A. Freunberger, L. J. Hardwick, J-M. Tarascon
    Nature Mater. 11, 19 (2012).

    Rated ‘Hot paper’ for its importance in a rapidly evolving field of high current interest.


    This is a link
  1. The Lithium-Oxygen Battery with Ether-based Electrolytes
    S.A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce
    Angew. Chem. Int. Ed. 50, 8609 (2011); Angew. Chem. 123, 8768 (2011).

    Rated ‘Hot paper’ for its importance in a rapidly evolving field of high current interest.


    This is a link

  2. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes
    S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce
    J. Am. Chem. Soc. 133, 8040 (2011).


    This is a link

  3. Oxygen Reactions in a Non-Aqueous Li+ Electrolyte
    Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.-M. Tarascon, P. G. Bruce
    Angew. Chem. Int. Ed. 50, 6351 (2011).


  4. H2O2 decomposition reaction as selecting tool for catalysts in Li-O2 cells
    V. Giordani, S.A. Freunberger, P.G. Bruce, J.-M. Tarascon, D. Larcher
    Electrochem. Solid State Lett. 14, A64 (2011).


  5. Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li-O2 Cells
    L. Trahey, C.S. Johnson, J.T. Vaughey, S.-H. Kang, L.J. Hardwick, S.A. Freunberger, P.G. Bruce, M.M. Thackeray
    Electrochem. Solid State Lett. 13, A180 (2010).


  6. Measuring the Current Distribution in PEFCs with Sub-Millimeter Resolution, II. Impact of Operating Parameters
    M. Reum, S.A. Freunberger, A. Wokaun, F.N. Büchi
    J. Electrochem. Soc. 156, B301 (2009).


  7. Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC
    R. Flückiger, S.A. Freunberger, D. Kramer, A. Wokaun, G.G. Scherer, F.N. Büchi
    Electrochim. Acta 54, 551 (2008).


  8. Cell Interaction Phenomena in Polymer Electrolyte Fuel Cell Stacks
    S.A. Freunberger, I.A. Schneider, P.-C. Sui, A. Wokaun, N. Djilali, F.N. Büchi
    J. Electrochem. Soc. 155, B704 (2008).


  9. Electrochemical diffusimetry of fuel cell gas diffusion layers
    D. Kramer, S.A. Freunberger, R. Flückiger, I.A. Schneider, A. Wokaun, F.N. Büchi, G.G. Scherer:
    J. Electroanalyt. Chem. 612, 63 (2008).


  10. Consumption and Efficiency of a Passenger Car with a Hydrogen/Oxygen PEFC based Hybrid Electric Drive Train
    F.N. Büchi, G. Paganelli, P. Dietrich, D. Laurent, A. Tsukada, P.-A. Magne, D. Walser, P. Varenne, R. Kötz, S.A. Freunberger, A. Delfino, D. Olsommer
    Fuel Cells 7, 329 (2007).


  11. On the Efficiency of an Advanced Automotive Fuel Cell System
    F.N. Büchi, S.A. Freunberger, M. Reum, G. Paganelli, A. Tsukada, P. Dietrich, A. Delfino
    Fuel Cells 7, 159 (2007).


  12. Oscillations in the gas channels, I. The Forgotten Player in Impedance Spectroscopy in Polymer Electrolyte Fuel Cells
    I.A. Schneider, S.A. Freunberger, D. Kramer, A. Wokaun, G.G. Scherer
    J. Electrochem. Soc. 154, B383 (2007).


  13. Experimental Investigation of Coupling Phenomena in Polymer Electrolyte Fuel Cell Stacks
    M. Santis, S.A. Freunberger, M. Papra, A. Wokaun, F.N. Büchi
    J. Power Sources 161, 1076 (2006).


  14. Measuring the Current Distribution in PEFCs with Sub-Millimeter Resolution, I. Methodology
    S.A. Freunberger, M. Reum, J. Evertz, A. Wokaun, F.N. Büchi
    J. Electrochem. Soc. 153, A2158 (2006).

    Selected as 2006 Energy Research Highlight at Paul Scherrer Institute.


    This is a link

  15. Expanding Current Distribution Measurement in PEFCs to Sub-Millimeter Resolution
    S.A. Freunberger, M. Reum, A. Wokaun, F.N. Büchi
    Electrochem. Commun. 8, 1438 (2006).


  16. Homogenization of the Current Density in Polymer Electrolyte Fuel Cells by In-Plane Cathode Catalyst Gradients
    M. Santis, S.A. Freunberger, A. Reiner, F.N. Büchi
    Electrochimica Acta 51, 5383 (2006).


  17. In-Plane Effects in Large Scale PEFC, II. The Influence of Cooling Strategy on Cell Performance
    S.A. Freunberger, A. Wokaun, F.N. Büchi
    J. Electrochem. Soc. 153, A909 (2006).


  18. In-Plane Effects in Large Scale PEFC, I. Model Formulation and Validation
    S.A. Freunberger, M. Santis, I.A. Schneider, A. Wokaun, F.N. Büchi
    J. Electrochem. Soc. 153, A396 (2006).


  19. What is Learned Beyond the Scale of Single Cells?
    F.N. Büchi, S.A. Freunberger, M. Santis
    ECS Trans. 3, 963 (2006).


  20. Fuel Cell Modeling and Simulation
    J. Mantzaras, S.A. Freunberger, F.N. Büchi, M. Roos, W. Brandstätter, M. Prestat, L.L. Gauckler, B. Andreaus, F. Hajbolouri, S.M. Senn, D. Poulikakos, A.K. Chaniotis, D. Larrain, N. Autissier, F. Marechal,
    Chimia 58, 857 (2004).


  21. Modular Stack-Internal Air Humidification Concept-Verification in a 1kW Stack
    M. Santis, D. Schmid, M. Ruge, S.A. Freunberger, F.N. Büchi
    Fuel Cells 4, 214 (2004).



  1. Stable non-aqueous electrolyte promoting ideal reaction process in rechargeable Metal-Air batteries
    F. Bardé, P.G. Bruce, S.A. Freunberger, Y. Chen
    Int. Patent Nr. WO2013053378-A1 (2013).
  2. Production and composition of cathode material for rechargeable lithium-air batteries
    F. Bardé, P.G. Bruce, S.A. Freunberger, Y. Chen
    Int. Patent Nr. WO 2012111169 (2012).
  3. Cathode catalyst for rechargeable metal-air rechargeable metal-air battery
    F. Bardé, P.G. Bruce, S.A. Freunberger
    Int. Patent Nr: PCT/JP2010/059494 (2010).
  4. Method and device for the stacking of fuel cells
    F.N. Büchi, S.A. Freunberger
    Int. Patent Nr: PCT/EP03/07840 (2003).


Book Chapters

  1. Encyclopedia of Electrochemistry: Lithium–Oxygen Batteries
    Y.K. Petit, E. Mourad, S.A. Freunberger
    Wiley (2020). invited contribution.

  2. Polysaccharides in Supercapacitors
    Soon Yee Liew, Wim Thielemans, S.A. Freunberger, Stefan Spirk
    Springer (2016), in press. invited contribution.

  3. Non-aqueous Electrolytes
    S. A. Freunberger, Y. Chen, F. Bardé, K. Takechi, F. Mizuno, P.G. Bruce
    Lithium-air batteries – Fundamentals, Springer (2014), ISBN 978-1-4899-8062-5. invited contribution
  4. Design Approaches for Determining Local Current and Resistance in PEFC
    S.A. Freunberger, M. Reum, F.N. Büchi
    Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, New York, Vol. 6, Chapter 41 (2009). invited contribution